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Secret Sharing [Blakley’79,Shamir’79,Ito-Saito-Nishizeki’87]
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General Secret Sharing [ISN’89] monotone F : {0,1}n→{0,1}
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Key Complexity Measure: Total Share Size

Best Known Secret Sharing Schemes

Share size ≤ O(monotone formula size)≤ Õ(2n). [Benaloh-Leichter’88]

Share size ≤ O(monotone span program size)≤ Õ(2n). [Karchmer-Wigderson’93]

Lower Bounds

∃F that share size ≥ Õ(2n/2) for linear secret sharing. [KW’93]

∃F that total share size ≥ Ω̃(n2). [Csirmaz’97]

Empirical Observation: In general secret sharing,
share size grows (polynomially) on representation size.

Representation Size Barrier?

For any collection of 22Ω(n)
monotone access functions,

∃F in the collection that requires 2Ω(n) share size.
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√
n).



Our results

Representation Size Barrier?

For any collection of 22Ω(n)
monotone access functions,

∃F in the collection that requires 2Ω(n) share size.

Our Theorem: Overcoming the Representation Size Barrier

There is a collection of 22n/2
monotone access functions, s.t.

∀F in the family has a secret sharing scheme with share size 2Õ(
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Multi-party Conditional Disclosure of Secrets
[Gertner-Ishai-Kushilevitz-Malkin’00]
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I Correctness: When F (x1, . . . ,xn) = 1, Charlie gets s.

I IT Privacy: When F (x1, . . . ,xn) = 0, Charlie learns nothing about s.
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Multi-party Conditional Disclosure of Secrets [GIKM’00]
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2-party Conditional Disclosure of Secrets [GIKM’00]
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I Correctness: When F (x) = 1, Charlie gets s.

I IT Privacy: When F (x) = 0, Charlie learns nothing about s.



2-party CDS: Previous Works

2-Party CDS

Communication Complexity Reconstruction

Θ(2n/2) [GKW’15] linear

Θ(2n/3) [LVW’17] quadratic

2Õ(
√
n) [LVW’17] general

Ω(n) [GKW’15] general
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Key Idea: Player Emulation [Hirt-Maurer’00]
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I How can n players jointly compute mB ... revealing nothing else?

I PSM (Private Simultaneous Messages) [FKN’94] ≈ Non-Interactive MPC
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I ux : matching vector

ux ,vx ∈ Z`
6 for each x ∈ {0,1}n

〈ux ,vy 〉=

{
0, if x = y

6= 0, o.w.

I ` = 2O(
√
n logn) [BBR’94,Gro’00]

I Communication = ` = 2O(
√
n logn)

m1 m2 mn

x1 x2 xn
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randomness r

PSM protocol computing mB?

I If mB(x ,s,r) computable by
small arithmetic formula,
PSM communication is small.
[IK’02,AIK’04]

I Is x 7→ ux simple?
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